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ANALYSIS OF 2:SPAR CANTILEVER WINGS WITH SPECIAL REFERENCE TO
TORSION AND LOAD TRANSFERENCE

By Psvr Kumw

SUMMARY

This paper deals with the analysis of 2-spar cantilever
wings in lorsion, faking cognizance of the fact that the
spars are not independent, but are interconnected by ribs
and other structural members. The principles of inter-
action are briefly explained, showing that the mutual
relief action occurring depends on the ‘“pure torsional
stiffness” of the wing cross section. Various practical
methods of analysis are outlined. The * Friedrichs-von
Kdrmdn equations” are shown to require the least amount
of labor. These equations were originally derived for
wings that owe their torsional stiffness to the individual
torsional stiffnesses of the spars; it 18 shown, however, that
the equalions apply also fo wings in which the torsional
stiffness 18 due to drag bracing—wires or siressed skin—
arranged in two planes.

Numerical examples by the several methods of analysis
are qiven and the agreement between the calculation and
experiment 1s shown. In the case of a trussed-spar
structure the results are practically equivalent to the resulis
of standard least-work calculations which treat the struc-
ture as o pin-joinded space framework, but they can be
obtained with so much less labor that the analysis may be
made as a routine design procedure.

INTRODUCTION

The forces acting on a cantilever wing produce, in
general, bending and torsion of the wing frame, the term
“wing frame” being used here to denote the combina-
tion of spars and such structural elements as ribs and
drag wires which connect the spars and contribute to
the structural strength.

The present investigation deals with the transference
of forces between the spars due to the connecting ele-
ments and is concerned with methods of analysis suit-
able for practical use. The work was confined to the
problem of cantilever 2-spar wings chiefly because the
interaction effect is relatively more important for this
type of wing than for any other type. A survey of the
literature showed that the first article discussing inter-
action effect was published in Germany in 1918 and has
been available in an English translation (reference 1)
gince 1923. For wing frames without drag bracing a

very convenient method has been developed by Fried-
richs and von Karmén (reference 2). As the Fried-
richs-von Karm#én formulas have apparently never been
published in English, their derivation is given. The
method is then extended to cover other cases of 2-spar
construction, and the available experimental evidence
is analyzed by this method. For comparison, a con-
ventional method of analysis is used in some cases, and
it is shown that the labor of computation by thismethod
may be reduced without appreciable error by assuming
that only one or two ribs are active in transferring the
load. The simplified conventional method gives good
approximations for the bending moments in the spars.

WING FRAMES WITH DRAG BRACING IN A SINGLE
PLANE AND WITH PARALLEL SPARS

WING FRAMES WITH INDEPENDENT SPARS

Let us consider briefly the action of & 2-spar wing
frame conforming to the usual assumption that the
ribs are simply supported at the spars, so that there is
no interaction between the spars. The load P (fig. 1)
is distributed between the two spars according to the
position of its point of application. In general, the
deflections of the spars resulting from the components
Py and Py will differ, resulting in a twist of the wing.
There is, however, one point of the section at which P
may be applied without causing a twist; this point is
called the “‘elastic center” of the section, and its
position is given approximately by the condition

%:bo=ERIR:EpIP (1)

where E is the modulus of elasticity, I the moment of
inertia, and the subscripts E and F refer to rear and
front, respectively.

The locus of the elastic centers of & wing is called the
“elastic axis” or the “axis of twist.”” This axis may
usually be approximated by a straight line; a large
deviation from the straight line may occur, but for the
present purpose the influence of such a deviation is
small if it occurs only close to the root and will be
neglected.

For purposes of analysis it is convenient to replace
a load P in an arbitrary position by a direct bending
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load P at the elastic center and a couple Pe, where e
is the distance between the point of application of P
and the elastic center. The tfotal stresses will be
obtained by superposing the stresses due to the bend-
ing load and the stresses due to the torque; only the
analysis of the stresses due to torque will be dealt with
in the following investigation.

In figure 2 is shown a 2-spar system with a pure
torque acting on it, exerted by equal and opposite
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FIGURE 1.—Two-spar wing section.

uniform running loads on the two spars. The torque
T=wLb is taken up entirely by bending of the spars,
and if the cross sections of the spars are constant, the
angle of twist at the tip in radians is

wlt @)

=4,

. 1 1,1 ,
where Ay is defined by E=E+E’ Ar=EIy,
and AR=EIB.

F1GURE 2.—Deformation of 2-spar wing withont interaction.
WING FRAMES WITH ONE RIB

Principles of interaction,—The elastic axis of a wing
frame can be computed for most types of 2-spar con-
struction; consequently, as indicated in the paragraphs
on wings with independent spars, it will always be
assumed that the elastic axis has been found and that
the load has been resolved into a bending load and a
torque. The loading condition investigated will be a
pure torque;i.e., equal and opposite loads on front and
rear spars at any station. The general case of arbi-

trary loadings on front and rear spars will, however, be
briefly discussed in a later section.

A wing with independent spars having been con-
sidered, the next step will be to consider & wing frame
consisting of two spars connected by a rib at the tip.
It may be well to emphasize here that throughout this
report the term “rib” is used to denote a rib specially
designed for the purpose of transferring loads from one
spar to another. It will be assumed that such ribs are

F19uRe 3.—Deformation of wing frame with spars of Infinite torsional stiffness.

rigid against bending in their own plane, but have
negligible torsional stiffness against warping out of their
plane. Checks of existing designs have shown that
this_assumption can be fulfilled with the practical
accuracy required.

Figures 3 and 4 show a wing frame consisting of a
deep, stiff front spar and a shallow, flexible rear spar.
The load may consist of two equal and opposite forces

Fi1aUuRE 4.—Deformation of wing frame with spars of zero tors{onal stiffness,

P applied at the tip, but only one of them has been
indicated since this is sufficient to explain the action.

Figure 3 shows a state of deformation that might be
predicted after very superficial inspection. The front
spar has been forced by the tip rib to deflect the same
amount as the rear spar. For any number of ribs,
the condition that the front-spar deflection equals the
rear-spar deflection at each rib would furnish sufficient
equations to solve the indeterminate structure. This
consideration was the basis for proposed analytical
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(reference 3) and graphical (reference 4) methods of
investigating wing frames.

A little reflection, however, shows that this assump-
tion is unconservative. The assumed resultant action
would occur only if the torsional stiffness of the spars
were infinite. Actually, & number of spar sections in
common use tend to approach the opposite extreme of
negligible torsional stiffness. Figure 4 shows the re-
sultant deformation of such a wing frame. Without
torsional stiffness, the front spar simply twists without
offering any aid to the loaded rear spar.

Calculation of relief moment.—Figure 5 shows a
wing frame consisting of two parallel spars connected
by arib at the tip. For convenience, the cross sections
are at first assumed constant.

The load is a torque, exerted by equal and opposite
uniform running loads on each spar. The structure is
made determinate by cutting the rib and introducing
as unknowns the shear force X and the bending mo-
ment Y in the rib.

The external loads cause vertical displacements of
the two edges of the cut in the rib, and the two un-
knowns are calculated from the two conditions of con-
tinuity: The relative angular displacement of the two
edges must be zero, and the relative vertical displace-
ment of the two edges of the cut must be zero. The
first condition is fulfilled if the cut is made at such a
location that 5

a —a
B Bn ®

where Br=@Jr is the torsional stiffness of the front
spar. (See appendix A.) If the cut is made at this
point, the bending moment Y is zero, leaving the shear
force X as the only unknown, to be calculated by using
the second condition of continuity.

The relative vertical displacement at the cut due to

the external forces is
_wLt (@
yd_ 8 Ao )

where 4, has the same meaning as in equation (2).
The relative vertical displacement due to X consists
of two parts, a direct bending deflection of the spars
and o vertical displacement of the cut due to twist of

the spars. J— \
Yx=34, + B, (5)

where By=Bp+Bz. (Formulas for calculating B are
given in appendix A.) Equation (5) holds whether or
not the front and rear spars are alike.
The second condition of continuity requires that
1.=1x, which gives
X 3wl
- b*4, (8
8<1 +3PE
The bending moment in the spar without interaction
is equal at any point to the externally applied moment

we
M="F

‘With the rib intact, the bending moment
M at any point z is obtained by subtracting from M,
the relief moment m=zX due to the action of the
shearing force X in the rib.

Although all the foregoing calculations were made
under the assumption of constant-spar cross sections,
the methods used can be extended without difficulty to
the case of variable cross sections and any arbitrary
loading condition. The only difference is that some
additional labor will be required to calculate the
deflections by integration; ordinarily, this will be an
approximate numerical integration or perhaps a
graphical one.

Estimate of torsional stiffness required.—Formula
(6) shows that the relief moment depends on the

2
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F1aURE 5.—Diagram for analysis of wing frame with one rib.

spacing may be considered as fixed by other design
considerations, it is evident that an increase of relief
action can be achieved only by increasing the torsional
stiffnesses B of the spars.

In order to gain & quantitative idea of the torsional
stiffness required for a desired amount of interaction,
formula (6) may be used to establish a relief coefficient,
giving the ratio of the relief moment at the wing root
to the external bending moment:

Ce=17. )

For uniform loading and constent-spar sections,
this becomes
3
_
4(1+3£;%—*:

Using an average value of %=é

Cr= (7a)

and replacing A,

by % Ar, By by 2B (i.e., assuming front and rear
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spars to be equal) reduces (7a) to

Gl
"1 14, (7b)
3 ' 25Bp

Assuming a reduction in bending moment of 5 percent
as the minimum worth considering, and adding to this
another 5 percent for inefficiency of joints and deflec-
tion of ribs, we obtain Cr=0.10 as the minimum
requirement. Equation (7b) then gives & maximum
permissible value of Az/Br=217. A comparison of
the A/B values for the rectangular beam and the
routed beam of appendix A shows that the rectangular
beam is within this limit, but that the routed beam
has insufficient torsional stiffness to justify calculations
for transference action.

Formula (7a) shows that the relief action disappears
if the torsional stiffness B approaches zero; if B ap-
proaches infinity, the relief coefficient approaches the
value ¥, corresponding to a beam built in at one end
and supported at the other.
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F1QURE 6.—Diagram for analysis of wing frame with two ribs.

Influence of location of rib along span.—The rib
need not necessarily be located at the tip, but may be
anywhere along the span. It is difficult to make any
precise statements as to the best location for maxi-
mum effectiveness, since too many factors enter into
the problem. In the first place, there is no simple
criterion for effectiveness. The reduction in bending
moment at the root was used in a preceding paragraph,
but the reduction in moment all along the span should
be: considered to obtain a complete picture. Further-
more, the force in the rib depends on the relative values
of the bending and torsional stiffnesses of front and
rear spars, and these are capable of so many variations
that a detailed discussion appears useless.

Generally speaking, it may be said that the maxi-
mum effects are secured by having the rib close to the
tip of the wing. The extreme tip is the best place
for the rib if the spars have constant sections and
bave vanishing torsional stiffness. If the spars taper,
or if they have a very high torsional stiffness, the best
position for the rib is farther inboard. For normal

amounts of taper and torsional stiffness, the best loca-
tion is usuelly in the outer third of the semispan.
Two practical considerations are in favor of placing
the rib farther out than the best position for theoretical
maximum relief moment in the spar. The farther
inboard the rib is located the higher the force in it,
unless the torsional stiffness is very low, so that the
rib must be made very heavy to secure the necessary
stiffness and strength. Furthermore, the relative
motion of the two spars becomes rapidly less as the
wing root is approached; consequently, the importance
of the unavoidable play in the fittings increases
rapidly and may vitiate any conclusions drawn on the
basis of calculations assuming perfect joints. If
desired, the effects of imperfect joints and of deforma-
tion of the rib may be taken into account when
making the calculations but it is obvious that no
general rules for locating the rib can be made, since
allowances for such deviations from the fundamental
assumptions depend entirely on the type of design.

WING FRAMES WITH MORE THAN ONE RIB

Standard methods of analysis.—The application of
a conventional method of analysis will be briefly
sketched for the case of a frame with two ribs (fig. 6).
The first step is to calculate the locations of the cuts
in the ribs by equation (3). If they do not fall in the
same. chordwise location, the distances may be aver-
aged, giving the points closer to the spanwise center
line of the frame more weight. An approximation
that is always conservative for the spars is to make
the cuts at the center line of the frame. The error
committed by so doing is appreciable only if the spars
have very low torsional stiffness, and if there is a
large difference between the bending stiffnesses of the

front and the rear spar. For %:.% and I};:“%Ip, the

error in X is 11 percent for the box spar of appendix A
and 21 percent for the rectangular spar.

Cutting the ribs introduces one unknown for each
rib and one condition: The relative vertical displace-
ment at each cut due to the external loads must
equal the vertical displacement due to the unknowns
X, and X; or
(82)

(8b)

1/1,=ZI1,1X1 +Z/1 2X2
'.1/2,=y2,1X1 22X

where 7, 2 18 the deflection at cut 1, due to a unit
force acting at 2. As in the case of the single rib, all
coefficients connected with the unknowns contain two
terms, one due to bending and one due to torsion. The
coefficients can be computed for any given numer-
ical case and substituted in the equations (8a) and
(8b). The solution of these two simultaneous equa-
tions offers no difficulties.
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For designers who prefer least-work methods, Mr.
C. P. Burgess of the Bureau of Aeronautics, Navy
Department, has proposed the following method of
solution:

Consider as statically determinate structures the two
spars, endowed with bending stiffness only, and as
redundancies the torsional stiffnesses B, in each bay.
Denote by B, the fraction of the total torque in bay n
taken up by torsional stresses; by A4, the bending
moments in the spars with the ribs cut; by M, the
bending moments in the spars due to a pair of torque
moments, equal in magnitude to the width of the bay,
applied through the drag bracing at the outboard and
the inboard end of bay 7n; and by ! the length of the
bay.

The following system of equations may now be

written:
2,
Tll lR’} :fMlMgi

Y [

+2 | Mju‘ da=0 (90)
w3 s [
+2 f MAM’dx=o (9b)

When these equations have been solved for RB; and
R; the final bending moments are obtained from

M=M,+R,M,+R,M, (9¢c)

The physical concept behind this method is the same
a8 for the first method outlined; the labor of compu-
tation is considerably lessened, however, through the
introduction of equal and opposite couples at the end
of each bay in place of the single couples Xb used in
the first method.

If there are more than three or four ribs, the pro-
cedure becomes very laborious both in the computa-
tion of the coefficients and the solution of the system
of equations. Thalau (reference 5) has nevertheless
made several series of such calculations and, although
the results are only of general interest on account of
the assumptions made (constant and equal-spar sec-
tions), some interesting conclusions can be drawn
from these calculations. The most important con-
clusion is that the tip rib gives practically all of the
relieving effect, and that additional ribs in the span
have little effect, no matter how many ribs are added
or where they are located. Concordant with this
fact, the forces in these additional ribs are usually
smaller than the force in the tip rib, except for spars
with unusually large torsional stiffnesses.

If the cross sections of the spars vary along the
span, the situation is similar to that of a wing frame
with a single rib. In general, the most advantageous
locations for two ribs would be at the tip and at ap-
proximately two-thirds of the semispan from the root.

In view of the results of Thalau’s calculations on
spars with constant sections, it seems safe to assume
that good approximations for the bending moments in
the spars and the force in the tip rib will be obtained
for any case of more than two ribs by assuming that
only the tip rib and a tib at two-thirds of the span
are operative. This statement will be corroborated
later on by comparison with other methods of calcula-
tion.

The approximate method of calculation has the
drawback of not giving the forces in the intermediate
ribs. It has already been pointed out, however, that
for the inboard portion of the wing, calculations may
be largely illusory due to deformations and the effects
of play in fittings; consequently, judicious estimates
based on the force in the tip rib are probably of as
much practical value as more exact calculations.

It may be mentioned that attempts have been made
to solve the problem of the multirib wing frame from
the opposite point of view, i.e., by assuming that there
are infinitely many ribs and setting up the differential
equations for two spars connected by a continuous
elastic coupling. Reference 6 gives such a solution
and a very complete discussion of the fundamental
case of constant sections with uniform load. For
variable sections and loads, successive approximation
methods have been proposed (see bibliography in
reference 6) for integrating the differential equations,
but they are in too mathematical a form to appeal
to the stress-analyst. As a matter of some interest,
the formulas for the angle of twist at the tip of a
wing with constant-section spars will be given here.

(8) For a torsional moment 7' consisting of two
equal and opposite forces applied at the tip

0__B_(1_ta.nh )\L>

(b) For a torsional moment produced by equal and
opposite uniform running loads w along the spars

(10a)

0-——p—<1+ MI*—L tanh AL —sech \L)(lOb)

where
B,

A

The Friedrichs-von K&rmin equations.—The con-
ventional methods of enalysis become very cumber-
some for practical use for more than three or four
unknowns if no sweeping simplifying assumptions are
made. Two main defects of these methods are ap-
parent: When the coefficients are calculated, it is
necessary to consider the properties of a large part of
the wing frame and to make lengthy numerical inte-
grations; furthermore, unless certain combinations of
the forces X, X, etc., are used as unknowns, the re-
sulting system of equations involves each unkmown
in each equation, thus producing a system which is
difficult to solve by ordinary means.

)\2
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Friedrichs and von K&rm#n have shown a solution
of the difficulty (reference 2). They point out that
each spar may be considered as a continuous beam
over a number of elastically yielding supports, the
ribs, which in turn derive their load-bearing ability
from the other spar. Convenient methods for dealing
with continuous beams are well known, one of them
being the method of ‘‘3-moment equations’; the
Friedrichs-von Kfrmfn equations are essentially a
set of 3-moment equations applied to a wing frame.
The derivation of these equations will now be given.

Figure 7 shows part of a wing frame consisting of
two parallel spars connected by a number of ribs. The

ribs are numbered, beginning with zero at the wing tip, |

and each bay carries the same number as the rib at its
inboard end. In order to investigate the internal
forces in the spars, the spars have been cut just out-

All signs are posilive
in direction of arrows

FiGURE 7.—Free-body dlagram of wing frame with many ribs.

board of the nth rib. The forces acting on the face
of each cut are a shearing force S, a bending moment
M, and a torsional moment 7. The external load
consgists of a running load w on each spar, which need
not be uniform along the span, but is subjected only
to the condition that at any point wr=wz. The
opposite sense of forces and bending moments in the
two spars is taken care of by the sign convention
adopted. Since wr=uwg, the external shears and bend-
ing moments (without interaction) at any point are
also equal in the front and rear spars, so that no sub-
scripts denoting front or rear are needed, but only
subscripts denoting the spanwise location, and we

may write
» dAL,
J = =),

Of the three significant equations of static equilibrium,
two state that the internal shears and bending moments

(FK-1)

are also equal in the front and rear spars

S;':SB:S, MP=MR=M (FK_Z)
The third equation of equilibrium gives

dM

Now, remembering that S=E and defining the

relief moment m by

M=M,+m (FK—4)
equation (FK—3) may be transformed to
Te-TetbS=0 (FK-5)

(From M,,=M,, and Mp=M, it follows that
Mp="M4.)

The relief moments mz and my are due to the con-
centrated forces exerted on the spars by the ribs; there-
fore, they are linearly distributed between stations, and

<(_1ﬂ M= My
d/» kb
which may be substituted into the last equation to
give
TF+TR+b7L_l;h=O (FK-6)
The torque (T'»+ Tr) remains constant for the length
of one bay. Since the spars are assumed to be rigidly
connected at each station by the rib, and consequently
the twist of the front spar between stations n—1 and n
must equal the twist of the rear spar between these
stations, the relation between the torques T and T’ is
given by r B
F__2F =
T.~B, (FK-7)
where B is again the torsional stiffness of the spar
section. If B varies between stations, the average
defined by
1 _1(* de
B, LJa1B: (FE-8)

must be used.
Equations (FK-6) and (FK-7) combine to give
Tru=— ) L (57;),
(FK-9)
b/ B
Lo ) 5o,

Since all static equations have been satisfied, the
principle of least work can now be applied to find
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the relief moments. The internal work done in the

structure is
=3 2%
+3 ) B ZZf

In this expression, each mtegral extends over one
bay, while the summation signs extend over the whole
wing. Using equations (FX—4) and (FK-9), M and
T can be expressed in terms of known quantities
and of the relief moments. When these substitutions
have been made in equation (FK-10), the partial
derivative of the work can be taken with respect
to my, M, My . . . My, furnishing one equation for
each unknown relief moment by equating each
derivative to zero.

On account of the linear distribution of m between
bays, the general expression for m at any point within
bay n is

(FK-10)

M=y ZL&EJ%Z‘:’-' (FE-11)
where for convenience the origin of the z axis is taken
at the lower-numbered end of the bay under consider-
ation.

It will be seen that when the derivative is taken
with respect to any moment m,, the summation
will extend over only two bays: Bay = from station
n—1 to n and bay n--1 from station n to n41. The
result is

oW
om,

* M,z n 1 l—z 2\z
=), &, 19t ,,_IE("“-ITJF”“?)W

nH M, (I—z)

1/ ! (FR12)
" -z —2
+L EJ(mn —Z—-I—m.+1 7) T d=

b2
H(@,), e =(,), (rr—m)=0
where 4, is defined as previously by i=AiF+AiR

and By=Br+Br. In each term, [ is the length of
the bay over which the integral extends.
Introducing the fo]lowing abbreviations

®» M,x
Al N e L

A
n—lAO l

[ o2dx (B
n= AT m).

_ (" z(l—2)dz_[b®
3"‘f 4, \IBy/»

7 (l—z)%dx
t_ n—1 ZAO + >

(FE-13)

the final system of equations reads
My (ry+1e) + M8 = — (D1 o)
My83+mMa(ra+15) +Ma83=— (P2t )
Ma83+Ms(rg-+1,) +me8s=— (Pa+ )
(FK-14)

mn—lsn+1nnrn= — P

The computation of the coefficients p, ¢, 7, &, and £
can be simplified by various assumptions. Whether
or not these assumptions are admissible in any given
case must be left to the judgment of the designer.
If five or more ribs are considered to be acting, it
will be sufficiently accurate, in general, to use the
values of A and B for the middle of each bay as the
average values and to assume that the sections are
constant for the length of one bay. With this assump-

tion '
rn=(s),+
\ (FK-15)
5=(52),~ (),
ta=7xn

Assuming constant A and a linear variation of M for
each bay gives
l
2= ), (Mo t204.)

0n=(5op) Mot M)

A somewhat better approximation for p and g is pos-
sibly obtained by assuming that A{/A varies linearly
(it is often practically constant), which gives

2

a~1

(FK-16)

(FK-17)
oM,_, | M.,
=% <Ao T4,

If the assumption of constant A4, in each bay does not
appear to be sufficiently accurate, and linear variation
from A,,_, to A,, is assumed, the termsin r, s, ¢ become,

dropping the subscript zero

e

a8

1 1,, 1, ,
S L T

(FK-18)
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—A,4,, log,

i (@),

l 3
tn=m[_§An2+2AnAu—l_§An—l

A b?
2loo -2 _—
+Aﬂ IOOC n-1]+<lBo>n

Attention should perhaps be called to the fact that
the sign convention adopted for the front spar is
opposite to the standard.

The general case of arbitrary loadings.—The separa-
tion of the load into a bending load and a torque load
usually results in a reduction of the numerical work
required, because the calculation of the interaction
effect is made only once for the case of pure torque.
Various flight conditions can then be investigated
simply by superposing the effects of bending and torque
loads in the proper proportions.

The direct analysis of any case ol arbitrary loadings
on front and rear spars, for example, the low angle-of-
attack condition, may be made by any of the methods
discussed. It is obvious that such a procedure of

All dimensions in centimeters

) 250 Cross section
of duralumin
Plan view of wing frame spars

F1auRE 8.—Detalls of duralumin wing frame.

investigating each flight condition separately would be
lengthy because each time the calculation of the inter-
action effect would be included. This method, how-
ever, does not require the knowledge of the elastic
axis; it may therefore be preferable in cases where
there is some doubt about the accuracy with which
the elastic axis may be found.

The method of procedure to be used in the general
case requires no comments if standard methods are
used. If the Friedrichs-von Kirmén equations are
used, the following substitutions must be made in
(FK-13):

_ ™ My, % 4 .Z'l[ma:
P== n—I -AF 7 + n—1 AR 7

(FK-19)
[ Sz (57) e [ a2 ()

provided that the sign convention of figure 7 is retained.
If the usual sign convention is adopted (up loads posi-
tive for both spars), the sign of the front spar term in
» and ¢ must be reversed.

NUMERICAL EXAMPLE FOR USE OF FORMULAS, WITH
COMPARISONS BETWEEN THEORY AND EXPERIMENT
In order to show the application of the formulas de-
veloped, & metal wing frame will be calculated in detail.
The dimensions of the frame and the test results are
taken from reference 7. Figure 8 shows the dimensions
of the wing frame and of the spar section (front and
rear spars are identical). Since the absolute dimen-
sions of the wing are such that it cannot be considered
as a practical case, the metric units have not been
converted into English units.
The properties of spars are computed as follows:

I=17.1 cm?*
Ap=Elp=FEIlz=11.2X10% kg cm? (from bending
test on spar)

1 1 1
%= (1 +113) x10°
Ay=5.6X10°% kg cm?
Jr=(formula (T-3), appendix A)=14.3 cm*
G=285,000 kg em? (from tests on round tubes)
Br=GJe=0Jz=4.07X10° kg cm?
=(4.07+4.07)X10°=8.14 X 10% kg cm?

The loading condition chosen here for comparison
with test results is & 40-kilogram load applied at the
tip of the front spar. Since the two spars are alike,
the elastic axis of the wing {rame is at the center line,
and the load may be resolved into a bending load of
40 kilograms at the center line and a torque of 40X 50=
2,000 cm-kg. The vertical deflection at the tip due to
the bending load is

202503
N=3i1.2x108

independent of the numbers of ribs acting. The deflec-
tions due to the torque will be computed for two cases:
all ribs acting, and tip rib only acting.

Since the case of 10 ribs acting is practically a close
approach to an infinite number of ribs acting, formula
(10a) may be used here. The parameter A is found
from

=9.30 cm

B 8.14XC10°
3_ 20 __ —4
M= FET 56X 100 100F 1463 X10

A=1.206%10-?; A\L=3.015; tanh AL=0.995

_2 000)(250(1 0. 995)___0.0411

T 8.14X108 3.015
y,=0X%=".05 cm

For the case of the tip rib only acting, a formula similar
to formula (6) can be derived

P
X=—"%74,
1+3Z§ E
where P is defined by P=T7/6=20 kg

Substituting the numerical values gives
X=0.752 P=15.04 kg
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Consequently, the tip deflection due to torque is for
this case
_ 4.96X250°
Y =3Xi12X10°

The total deflections of the front-spar tip are therefore

y=11-+y:=11.35 cm for all ribs acting

y=1,+7s=11.61 cm for tip rib only acting
The experimental values are 11.13 and 11.33 respec-
tively.

In order to simplify the calculation of the moments
by means of the Friedrichs-von Kérmén formules, it
will be assumed that only five ribs are working.

=2.31 cm

L=L=hL=l=l;=>50 cm
Using equation (FK-15):

r=ry=ry=re=ry=h=h=h=l=1
_ 50 + 1002
T 3X5.6X10° ' 50<8.14X10°
=(8.0-4-24.6) X1078=27.6 X107
8;=8y=8;=8,=8;=(1.5—24.6) X 1078=—23.1X10"°

For this calculation let P=1, on each spar tip (T'=100),
which gives '

M,=0 M,=50 M,=100
M,=150 M,,=200 M, =250 cm-kg

Using equation (FK-16):

p1=&%m(ﬁ(o+2x50)=149.0x10-6
p,:m%(50+2><100)=372.5x10—6
ps___m%m_ﬁ(mowxwo) =596.0% 10~
p‘=6—><5%9m(150+2x200)=319.5><1o-ﬁ
pszm%@(zooux%m:1,043.0><10—°

q,=1.490X107%(0-+50)="74.5X10"°
¢;=1.4907107%(2X50-}100)=298X10~°
:=1.490>107%(2X1004-150)=521.5X107°
¢=1.490X10"%(2X150+4200)=74510"°
¢s=1.490X107%(2X2004250)=968.5>107¢

With these values of p, ¢, r, 8, and ¢ the following
system of equations is obtained

m;X55.2—myX23.1=—447
—myX23.14+-m3X55.2—m;X23.1=—894
—m2{23.14myX55.2—mX23.1=—1,341
—m3X23.1+4mX55.2—m;X23.1=—1,788
—m, X 23.14+m;X27.6 =—1,043

These equations may be solved by expressing m, as
o function of m; in the last equation, then successively
expressing ms, ms, and m; as functions of m;; two
equations for m; will be obtained which can be used
to calculate m;. Substitution of ms in the previously
obtained expressions will then give m,, m,, m;, and m,.

In cerfain cases, the method of solution indicated
will give the result as the difference of numbers too
large to be handled even on a calculating machine.
In such cases the solution can be effected by a process
of successive approximations. Assume reasonable
values for the relief moments m along the span and,
starting with the last equation, solve each equation
in turn for the unknown with the largest coefficient.
Repeat the process with the corrected values for the
unknowns until two successive values are in sufficiently
close agreement. This method of solving the system
of equations is very rapid if the coefficients (ry+1%,y1)
are 5 to 10 times larger than the coefficient s,, 2 con-
dition applying particularly to stressed-skin wings.

Table I gives the results of the calculations for the
present example in the following sequence:

(1) The external bending moment (for a tip load of
P=1) on each spar.

(2) The relief moments m; to ms.

(8) The resulting bending moments (sum of (1) and
(2) by equation (FK—4)), equal and opposite for front
and rear spar.

(4) The differences between successive values of m.

(5) The total torque carried by torsional shear of
the spars in each bay (equation (FK-6))

T1=TF+TR=ZQ(mu'—mu—I)
(6) The bending shear in the spars for each section,

S=%; in this case, since the moment distribution

along the span is linear, between stations S=M_T_ﬂ—Mﬂ—1.

(7) The torque carried in each bay by the bending
shear in the spars 77,=:Sb.

As a check, it will be noted that 11+ T:=1T.,.

TABLE I.—INTERNAL FORCES AND MOMENTS IN
WING FRAME OF REFERENCE 7

[L-oading: 1 kg down at tip of front spar, 1 kg up at tip of rear spar]

M, m, M, T, S, Ts,
Statlon| o7 ¥e | em-kg |em-kg | ™™ | omkg | kg em-kg
0 0 0 0 —- .
............. 4.3 88.6 | 0.114 1L4
1 50 —44.3 i A O [
- 43.4 §6.8 132 13.2
2 100 ~87.7 123 |l
ceeae 380 76.0 240 200
3 150 | —125.7 243
........ — 29.5 5.0 .410 410
4 200 —155.2 44.8 [N PRERIIN SN
- 125 25.0 750 75.0
b 250 —167.7 82.3

The results are plotted in figure 9. The figure shows
the external bending moments f,, the bending
moments M with the tip rib acting, the bending
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moments A with five ribs acting, and the variation of
T, and T; elong the span. It is apparent that near
the tip the largest part of the external torque is carried
by the torsional stresses in the spars but that, as the
root is approached, the part of the torque carried by
bending of the spars rapidly increases and is the major
part near the roat.

The values of A given in table I may be used to
calculate the bending deflection at the tip due to the
torque, it being remembered that the actual torque is
exerted by P=23-20 kg on the spar tips. Numerical
integration of these values gave y=2.03 cm, as com-
pared with y=2.05 ¢m obtained from formula (8) and
y=2.31 cm obtained by assuming that only the tip
rib is acting. It will be seen that the percentage
difference in tip deflection is very much less than the

300 ~/20
20 &4
250 , Tes 1100
I T2
200F 7 80
¢ 2 1 2
R E
N N Sl
W L, ¥ N
100} 34 40
N A
- 4 //2’
> —
50 ) = 20
K - only, =7
i M(ﬁpr/’bo — acf'”q) /-
] 5r|b5 i
» T M(
g\l L 0
0 7 2 3 4 5 -
7ip Station Root

FIGURE 9.—Torque and bending moments in duralumin wing frame.

differences in bending moments along the span for
the two cases of tip rib acting and all ribs acting, the
latter differences being more than 100 percent in places,
as shown in figure 9. This fact means that ordinary
deflection measurements are of little value for tests
of this nature; in order to obtain the accuracy required,
it will be necessary either to measure the slope of the
elastic line or to make strain measurements.

A number of strain measurements was made on the
frame under consideration (reference 7), and figure 10
shows the results for the loading case computed in the
preceding example. The figure gives the bending
moments due to the direct bending load of 40 kilo-
grams applied at the elastic center of the wing, the
total computed moment (using the values of M of
table I), and the bending moments computed from
the strein meesurements. The agreement is good,
the only possible objection to the test procedure being
that equal and opposite loads should have been applied
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to both spars so as to eliminate the direct bending
load and thus considerably increase the accuracy of
checking the amount of relief action, which influences
only the part between the two curves of bending
moments.

A wing frame consisting of two wooden box spars
connected by 10 ribs was tested by von Fakla (refer-
ence 8). As a result of this test and a test on a full-
sized metal wing, von Fakla concluded that the inter-
action can be calculated to an accuracy of better than
5 percent. This conclusion, of course, involves the
presumption that the properties of the spars are known
with the same accuracy, a presumption hardly war-
ranted in any given case for wood construction, since
the material properties £ and @ are variable in much
wider limits.

10,000

700 | ]
— — Bending moment due fo bend-
— Ing load atelastic centers |
500 Bendg.mom't tolal,computed.
§000i——— o Bending moment from strain—
— measurements.
=500
$E000F—— v
\ "4(70‘TQ
S w
3 R -
N 40003008 { =
N pata
200 /)
2000F >
- 100 =
% / z 3 5
Tip Station Root

FIGURE 10.—Computed and measured bending moments in duralumin wing frame.

WING FRAMES WITH DRAG BRACING IN TWO
PLANES AND PARALLEL SPARS

PRINCIPLE OF CALCULATION

The Friedrichs-von Karmén formulas were derived
for & wing frame in which the drag bracing is arranged
in a single plane, so that pure torsional stiffness (i.e.,
torsional stiffness outside of that obtained by bending
of the spars) is furnished only by the individual
torsional stiffnesses of the spars. However, it is
quite well appreciated that double drag bracing, be it
wire or stressed skin, furnishes a much higher torsional
stiffness than can normally be obtained from the spars
alone, provided that the two planes of drag bracing
are well separated.

From the derivation of the Friedrichs-von Karm#fn
formulas, it is clear that they still hold if the pure
torsional stiffness of a wing section is furnished by
other means than by having spars possessing individual
torsional stiffness. The necessary torsional stiffness
may be achieved by connecting the spars in the top
and bottom planes by drag-wire bracing, thus closing
the space between the spars to form a torsion box; or



2-8PAR CANTILEVER WINGS WITH REFERENCE TO TORSION AND LOAD TRANSFERENCE 55

the wing may be covered with a stressed skin, convert-
ing the whole wing section into a torsionally stiff
shell. The wing must then be considered to consist
of two distinct elements: One element stressed in
bending, the spars; and one element stressed in torsion,
the torsion tube. The spar webs thus may perform a
dual function: They may at the same time be part
of the bending element and also part of the torsion
tube. The shearing stress in the webs is obtained by
superposing the shear due to torsion of the torsion
tube (uniformly distributed over the depth of the web)
and the shear due to bending of the spars (parabolically
distributed over the depth unless diagonal-tension
fields form).

The pure torsional stiffness of torsion tubes is calcu-
lated by formula (T-3), appendix A. In the case of
drag-wire bracing, it is expedient to calculate an effec-
tive skin thickness of an imaginary skin such that the
shear deformation of this skin is equal to the shear
deformation of a panel due to the elongation of the
wires,

-l ——————

FIGURE 11.—Shear deflection of truss panel and solld shest.

TFor the wire-braced panel we have (fig. 11)

oy &

v=PpaE

where A is the cross-sectional-area of.the diagonal. .
For the solid sheet

l
v=Pyg

Equating the deflection and solving for the equiva-
lent thickness

WbAE EA .
t—-RB—G,— ﬁlsmgocos @

For the panel of figure 12, consisting of steel spars
with steel-wire bracing, the torsional stiffiness becomes
(assuming E the same for tubes and wires)

4 A 4R2°G
GJ==r75 fds T 2b, 2h Zh

an

Now t1='@%2 sin @1 cos? ©1

tg_%‘;"sm @3 €0s? ¢,

b=l tan ¢;; h=l' tan ¢

T1046—36——F5

Therefore, by substitution

. 2B

[AD cos® o T A, cos’ w]

The computation of # need not be very exact, as a
rule, since #; is the decisive factor, the area of the tubes
in the spar web being much larger than that of the
wires. Average values may be used for ¢; and A4, if
these values change in the bay.

A word of caution appears very necessary regarding
the value of G to be used for stressed-skin wings,
particularly plywood-covered wings. The shearing
modulus has not been used very extensively in engi-
neering in the past; the results of only & few tests on
different materials are scattered through the literature,
and they have often been obtained by very question-
able methods. Only results obtained from torsion
tests should be used, if obtainable. Appendix B

l

(12)

k— v —>

Y AS—

\p=
.

Ficore 12—Disgram of trussed wing panel.

gives & collection of such data as were available to the
writer.

Attention must be called to the fact that the wing
covering may buckle at very low loads to form diagonal-
tension fields. VWhen a sheet of thickness ¢ has
buckled, it has a reduced effective thickness of

_tE
or for duralumin and steel, t,=§ t. This relationship

is based on the elementary theory of diagonal-tension
fields, and it involves the assumption that the flanges
are infinitely rigid and that the tension folds are in-
clined at 45° against the beam axis. Formulas for
calculating the buckling stress may be found in good
textbooks on strength of materials. In calculations of
this nature, the edges should be assumed to be simply
supported, because the elastic restraint that actually
exists is canceled by the detrimental effect of initial
buckles.



56

NUMERICAL EXAMPLE OF WING FRAME WITH DOUBLE DRAG-
WIRE BRACING, INCLUDING COMPARISON BETWEEN THEORY
AND EXPERIMENT

A very suitable example of this type of structure
is a wing frame that was built for testing purposes at

Wright Field. The dimensions of this frame, test

results, and results of least-work calculations treating
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the whole frame as a pin-jointed space structure are
given in reference 9. For convenience, the dimensions
are given in figure 13 of the present report and the
results of one set of least-work calculations are given
in figure 14, which is taken from figure 30 of referenco 9.

Tasre IIT—INTERNAL FORCES AND MOMENTS IN WING FRAME OF REFERENCE 9
[Loading: 100 pounds down at tip of the front spar; 100 pounds up at tip of the rear spar]

1 2 | s 4 5 8 7 8 9 10 1 12 13 14 15 16
Front spar Rear spar
Station S(dmg F drag s
Ay |om | AL | am | Ty | Ak | S0 "idmg | an, |Spar
in-1b.-} indb. | indb. | n.Ab. | tndb. | 1bin. ’ v | in-1b. » s 8 F (web S 8 F (web
Ib. 1b. . | (torsion), | (total), | ‘dlag)., |(torsion),| (total), | diag.),
1b. 1b. 1b. 1b. 1b. 1b.
0 0 0 0
2012 | 2,425 | 6.38 | 16L4 | 253 688 | 19,1 8.4 6.5 9.5 32.3 514 92,5
173600 =202 | 658
2,656 | 2,210 | 401 | 147.3 | 230 944 | 26.2 w2 7004 .5 20.5 567 | 100.4
277,200 1—5,568 | 1,632
i 2,051 | 1,710 | 8.80 | 1140 | 177.9 | 1,549 | 43.0 342 7.2 1081 &8 66.8 | 1187
3 10,&)0‘!—7,619 is,lsl
| &L | Las |44 | 75 |27 | 758 15 90.3 | 1277.8 9.7 86.5 | 184.1
4 114,400 |-8,4%0 ls.gw , |

The bending and torsional stifinesses were calculated as follows:
Moments of Inertia

Front spar: 1=230.1656X4.5=6.70 in!; E=29X10%; E1=194.3 X108 1b.in.?

Rear spar:  I=23<0.1656X3?=2.98 in4; EI=86.3 10 Ib.in.?

1 1 1
Ao 19437863

X10°=0.01674X10"° 4,=59.8¢10° Ibin.?

ToORSIONAL STIFFNESS oF Box SecTION

Equivalent thicknesses of solid sheet (formula (11))

Drog truss: 4 =30>é1106x0.0141x%x0.641 X0.769°=4,450
Front-spar web: t,=29éloex0.0786X%X0.707X0.7O7’=89,500 &
Rear-spar web: ta=29>2;,1°°x6.0786x%><0.555x0.8322=97,300 %
B—gs=4 d6;= . .4X29253. =— =14.87X10° Ibin?
f "t 4,450 ' 89,500 ' 97,300

It will be noted that the shear deflections of the
spars were neglected in computing the bending stiff-
ness, resulting in overestimating the stiffnesses, con-
sequently the loads calculated for the spars. In this
particular case, however, the error is not much larger
than the possible uncertainties; furthermore, the test
loads are introduced as vertical loads at the spars,
and the transference of the loads from the spars to
the drag trusses is not perfect as assumed by theory,
so that the approximate bending stiffnesses are suffi-
ciently accurate for the purpose of calculating the
interaction effect.

With the calculated values of A, and B, the relief
moments are calculated in the same manner as
for the duralumin wing frame (fig. 8). Column 1 of
table II gives the external bending moment for o down
load P=100 pounds on the front spar and an equal
up load on the rear spar. Column 2 gives the calcu-
lated relief moments; column 3 gives the actual bending
moment in the spars, obtained as the sum of columns
1 and 2. Column 4 gives the difference between relief
moments at successive stations; this difference multi-
plied by b/l gives the torque T} carried by the torsion
box, which is listed in column 5; column 6 gives the
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shear force per inch of perimeter in the torsion box,

obtained from f,t,=:2% where A=area of torsion tube.

The total shearing force for one drag truss, column 7,
is multiplied by 1.56 to give the force in the drag
wire, column 8. Column 9 gives the increments in
bending moments, which are used to compute the
bending shears listed in column 10. Column 11 gives
the torsional shear in the front spar, obtained by
multiplying the shear force per inch perimeter (column
6) by the depth of the spar. Column 12 gives the
total shear in the front spar, obtained by adding the
values of columns 10 and 11. Finally, column 13
gives the forces in the diagonals of the spar web,
caleulated from the shears of column 12. Columns
14, 15, and 16 give the shear calculations for the rear
spar.

The forces in the spar flanges are obtained by super-
posing the forces due to the bending moments and the
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now to member i—d, all of the torsional shear has been
transmitted to the web, so that the force in i—g is only
that due to bending.

Figure 14 is a reproduction of the results of least-
work calculations reported in reference 9. TUnfor-
tunately, the reference does not state whether the values
used in these calculations for tube areas, wire areas,
moduli of elasticity, etc., were actual or nominal. In
the calculations made by the writer, nominal sizes and
standard values were used;it will be seen that theresults
given in the preceding paragraph and in columns 8, 13,
and 16 of table II agree with the values given in figure
14 within the limits of the accuracy of calculation.

The same wing frame was calculated with ¥%-28
wire in place of the 10-32 wires, The agreement with
the least-work calculations was not so good as in the
previous case, but the differences were only about 5
percent when the maximum wire area permissible under
the materials specifications was used in the calculation.

P
N :,—Fronf pins Front spar b Ypper chord— y
i £ H / gr
ale g ile i Spar flonges
I 1% < 0.049
Spar webs
Front diag. % x 0.035
= = ver?, [ x 0.035
Aﬁ.ﬁ ] Bulkhead flonges
< ¢ 30 ! x 0.035
of o, 1
099 N Bulkhead webs
¥ x 0.035
Y.
Rear Wires:
10 - 32
£ (% ~ 28
7 Fear pins Rear spar 1 ‘l (Hs =29
> 6 All dimersions
in inches
36 ~[L 36 -I< 36 ‘!‘ 36 4 !
|. 14

F1GURE 13.—Diagram of trussed wing frame,

forces due to the torsional shear. Take, as an exam-
ple, the forces in the second bay from the tip of the
front spar. Member e~d (fig. 13) transmits the full
shear (i.e., compression due to the tension of the drag
wire) to the amount of f#J=4.91X36=177 pounds.
The force due to the bending moment is 1’%3?'=181
pounds; therefore the force in member e—d is 358
pounds.

Passing from member e—~d to member g—d, the shear
force in the flange is reéduced by the amount carried
over into the web members at the joint between e-d
and g—d; this reduction equals 4.91X18=88 pounds,
leaving 89 pounds to be taken care of in the flange; the
1,160_;0q

pounds, making the total force 218 pounds. Passing

force due to bending in member g-d is 5

The tests on the wing frame were made with three
different sizes of wire: 10-32, %-28, and 524 and
each with three different kinds of support: 4-pin sup-
port representing the support the frame would have in
an actual airplane, 3-pin support at the wing root, and
2-pin support (one pin in front spar, one pin in rear
spar). The latter methods, of support eliminate the
influence of the bending stiffness of the spars, so that
the tests evaluate the properties of the frame as a pure
torsion hox.

The calculation of the bending and pure torsional
stiffnesses of the frame is given in detail in the preceding
calculation for case I, i.e., 10-32 wire. The pure
torsional stiffnesses were calculated similarly for
cases II and IIT, i.e., %28 and %24 wire. With
these values, the tip deflections_were calculated by
formula (8) for a 2-pin support (pure torsion box) and
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& 4-pin support (wing frame). For the case of a 4-pin
support, the deflections were also calculated by inte-
grating the 4//ET curves which checked the deflections
obtained by the formula within 5 percent; the assump-
tion of infinitely many ribs underlying the formula can
therefore be used quite satisfactorily for as few as four
ribs.

The comparison of test results and calculations
showed that all computed deflections were much too
large. The ratio of the caleulated to the observed
values was almost 2 (within less than 5 percent) in

100
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assumption of slack counterwires gave deflections 48
percent too high, whereas the assumption of taut
counterwires gave deflections 26 percent too low for a
2-pin support.

This discrepancy may be explained as follows: If it
is assumed that all counterwires were just about to go
out of action at the highest test load used, the initial
tensions must bave been 48 percent, 36 percent, and
23 percent of the rated strength in cases I, IT, and III,
respectively. Obviously, the initial tension required
for case I is rather high; it seems reasonable to assume

10-32 wires

+574 +398 +287 +/32 +119 b -2 L] -
663 4+ - 57 - ! 5 + 127
X x
- © - (=) - (0 - x °
o e ? & %) ¢ -~ () ©, )
o N * ,\ 0 o ,\ ° ,9 & /9 Q
663 »>L=728 ~543 ~363 |-<498 - 343 ~ 136 ot
Y
100
+ = Tension — = Compression
E D C 8 Front A
< ¢ 1 $o, 6 <o
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%y %o o, 5. 42
A
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FIGURE 14.—Stress sheet for trussed wing frame (reference 9). Four-pin support; 100-1b. down on tip of front spar; 100-1b. up on tip of rear spar.

cases 11 and ITT for the 2-pin support. This relation-
ship points to the possibility that the counterwires
had sufficient initial tension to remain active through-
out the test, in which case the pure torsional stiffness
B, would be nearly doubled. The calculations were
therefore repeated, using twice the original values of
B,. It was found that in cases I and III the cal-
culated deflections for a 2-pin support were about 3
percent high and those for a 4-pin support about 9
percent low, errors which are well within the magnitude
of errors possible either in calculation or in test. In
case I the condition seemed to be in between: The

that the actual initial tension was considerably less, so
that the most highly stressed counterwires probably
went out of action and reduced the pure torsional
stiffness of the frame near the tip.

The test report makes no definite statements regard-
ing the condition of the counterwires beyond recom-
mending that in future tests they be omitted alto-
gether. This recommendation probably indicates that
their presence was felt to introduce uncertainties, to
say the least. In view of this and other difficulties,
such as questions on jig deflection, actual areas, and
moduli of elasticity, the writer has made no more
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concentrated effort to explain the differences between
theory and experiment. The following conclusions
may be drawn:

. 1. If an accurate check of the theory is desired, the
initial tension of the wires must be known accurately.
The easiest way to achieve this end is to remove the
counterwires for test purposes.

2. In view of the fact that the tip deflection com-
puted under the assumption of independent spars is
about 4 times that observed for case I and about 10
times that for case I1I, the proposed method of calcula-
tion constitutes a vast improvement. The large per-
centage discrepancies left in some cases between theory
and experiment can be explained by the uncertainty
sbout the test conditions.

/0,000 l 5,000
10 ~32 wires
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F1auRre 15, —Torque and bending moments in trossed wing frame.

3. The proposed method of calculation gives results
equivalent to standard least-work calculations which
treat the wing frame as a pin-jointed space framework

while the labor is reduced to & point where the com- "

putations may be made as a routine design procedure.
It may not be amiss to point out that design calcula-
tions—whether for stiffness or for strength—should
be based on the assumption of all counterwires being
slack, since this condition will ordinarily obtain under
design loads.

Figure 15 shows the results of the calculations for
the three tests with 10-32, %-28, and ¥—24 wires.

EXAMPLES OF STRESSED-SKIN WINGS

As an example of stressed-skin wings, the bending
moments and torsional deflections in an Atlantic
C-2A Transport wing were calculated. The calcula-
tions for the relief moments are exactly analogous to

those given in detail for the wire-braced wing frame,
once the torsional stiffnesses have been calculated for
each bay by formula (T-3) (appendix A). .

The dimensions and properties of the wing frame
and the test results are given in references 10 and 11;
for the shear modulus, G@=135,000 pounds per square
inch was used (appendix B). The results of the cal-
culations are shown in figures 16 and 17. The agree-
ment between calculated and experimental twist is
excellent.
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FI1GUBE 16.—Torque and twist In C-2A Transport wing.

The only test on & metal wing with parallel spars
that has come to the attention of the writer is de-
scribed in reference 12. The information given in the
report is meager and contains some obvious errors.
The conclusion may, however, be drawn that the
calculated stiffness value is conservative.

WING FRAMES WITH NONPARALLEL SPARS
FRIEDRICHS-VON KARMAN EQUATIONS FOR NONPARALLEL SPARS

Friedrichs and von Karmén indicate in their paper
(veference 2) the possibility of deriving equations for
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FI1GURE 17.—Bending moments in C-2A Transport wing.

wing frames with nonparallel spars. The writer has
made this derivation for the case of two spars having
the same inclination with the transverse axis, but has
found that the coefficients corresponding to 2, g, r, 8,
and ¢ (FK-13), contain so many terms that they are
of no practical use. This unfortunate fact arises from
two circumstances: First, both the bending moments
and the torsional moments always have two compo-
nents, since the coordinate system is not rectangular;
second, cross products of bending stiffnesses and tor-
sional stiffnesses arise, in o manner similar to the case
of & beam with bending moments not in a principal



60 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

plane, where product-of-inertia terms arise in addition
to moment-of-inertia terms. In view of the large
range of proportions possible, it did not seem possible
to derive any generally useful approximations of these
equations for nonparallel spars, and it was necessary
to resort to other methods of analysis.

APPROXIMATE METHODS OF CALCULATIONS

Good approximations for wings with small inclina-
tion of the spars may be obtained by assuming a con-
stant spar spacing equal to the average spacing and
using the Friedrichs-von Kéirman equations. The
actual spar spacing at any station is used, however,
to compute the torsional stiffness at that station if
the spar webs form two sides of the torsion box. This
method was used by Friedrichs and von KArmén
(reference 2) for calculating & duralumin test wing
with a taper between spars of 1:2. The calculated
angle of twist checks within about 5 percent, although
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FiGURE 18.—Rellef moments in XHB-3 wing frame calculated by three methods.

there is a discrepancy in the total deflections that
indicates bending of the wing in addition to the twist-
ing, in spite of the fact that the load applied was pre-
sumably a pure torque.

Another means of analyzing wing frames with non-
parallel spars would be to use conventional methods,
but to reduce the labor of computation by assuming
that only two ribs are working; namely, the rib at the
tip and a rib at one-third of the semispan from the tip,
as previously explained.

In order to gain some idea of the relative results
obtained with these different methods, they were
applied to the wing frame described in reference 13.
This frame, designated “XHB-~3"’, had a semispan of
262 inches, and was sharply tapered in plan form and
thickness. The spars were truss-type, of steel tubing,
and the drag bracing consisted of wires that decreased
in size from root to tip.

Figure 18 shows the relief moments for a load factor
of 0.5 and the load distribution as used in the tests cal-
culated by (1) the Friedrichs-von K&rmén formulas,

assuming constant spar spacing; (2) conventional
methods, assuming all ribs working; and (3) conven-
tional methods, assuming ribs 0 and 2 acting. Using
method (2) as a basis of comparison, it will be seen
that in this case method (3) gives a very close approxi-
mation for the bending moments in the spars. How-
ever, method (3) gives an incomplete picture of the
shears in the spars and of the forces in the ribs; fur-
thermore, it seems reasonable to assume on general
principles that the probability of obtaining good
approximations will usually be somewhat higher when
method (1) is used than when method (3) is used.
Method (1) is conservative compared with method (2)
as shown on figure 18, and some comparative calcula-
tions on wings with constant-section spars indicate
that it is always conservative in the practical range of
stiffness ratios.

Figure 19 shows the comparison of external and in-
ternal bending moments for the XHB-3 wing, based
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FIGURE 19.—Bending moments in XHB-3 wing frame.

on the Friedrichs-von K&rméan results. By an inte-
gration of the resulting M/ET curve, the tip deflections
were calculated for the unit torque acting on the wing,
and the results used in combination with the calcu-
lated deflections for unit bending load to obtain the
bending deflections at the tip in low and in high
incidence.

In order to make a comparison with the experimen-
tal results it was necessary to consider the influence of
the center section, since in these tests the fittings hold-
ing the spars at the root were not held by a rigid struc-
ture but were attached to the spars of a quite flexible
center section corresponding to the actual condition in
the airplane. It is obvious that the flexibility of the
center-section spars will increase the bending deflections
of the wing spars and, consequently, the amount of
relief action. Some simple calculations for the case of
only a tip rib acting showed that the relief moment at
the root may be increased by about 33 percent for a
wing with a torsional stiffness corresponding to that
of the XHB-3 wing and a center section of propor-
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tional length. The advantage over the wing built in
at the root decreases quite rapidly, however, with
increase of torsional stifiness and decrease of length of
center section, so that it should be neglected entirely
for ordinary design calculations.

The foregoing remarks should not be construed to
mean that a flexible center section is desirable. The
criterion for a good design is stiffness, not a large relief
coefficient.

In the XHB-3 tests at high and low incidences, the
direct bending deflections were always considerably
larger than the bending deflections due to torque.
Consequently, it was assumed as a first approximation
that the relief action was not affected by the flexibility
of the center section; however, the calculated deflec-
tions were compared not with the directly measured
deflections but with the deflections measured from the
tangent to the elastic curves of the spars at the hinge
fittings. The direction of this tangent was calculated
by assuming that the elastic curve was a circular arc
over the center section, and the radius was calculated
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F1aure 20.—Torque and bending moments in Driggs-Dart wing.

from the known deflections at the center line and at the
hinge fittings. This method gave very consistent
results for all tests and was therefore considered as
satisfactory. The comparison between the results of
this first approximation and the experimental results
showed that the calculated deflections were 8 percent
too high for both high and low incidences and both
front and rear spars. In the second approximation—
introducing a correction factor into the relieving effect
—the differences for low incidence were reduced to 7
percent and 5 percent. The interaction being entirely
neglected, the differences were increased to 10 percent
low and 21 percent high for front and Tear spars,
respectively.
EXAMPLES OF STRESSED-SKIN WINGS
WITH NONPARALLEL SPARS

An instructive example of high torsional stiffness
is given by the Driggs-Dart wing (reference 14) which
is a high-aspect-ratio wing for a very small single-

seater airplane. It is covered with plywood of the
same thickness as that used in the outboard half of the
Atlantic C—2A Transport wing and has therefore a
very high torsionsl stiffness and a very great amount
of relief action. Figure 20 shows that the torque is
carried almost entirely by the torsion tube, except
near the root, and that the bending moment left in the
spars is negligible except for a small amount at the
root. Figure 21 shows the experimental and the
calculated twist. The calculated twist was too large,
which may be due partly to a higher shear modulus,
partly to excess thickness of the plywood, and partly
to neglecting the spars in the calculation of the pure
torsional stiffness. Since the materials specifications
permit 20 percent excess thickness, the calculated
values of the twist were reduced by 20 percent and the
resulting curve shows good agreement.
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FiGure 21.—Twist of Driggs-Dart wing.

A very interesting test on a plywood-covered wing
is described in reference 15. The wing was tested
under & distributed torque corresponding to the actual
torque in a terminal-velocity dive. The bending
moments along the span were measured at 17 stations
by means of strain gages, and the torque T% carried
by the spars was computed from these moments. Sub-
tracting T; from the known external torque T, gave
the torque 7 taken up by the torsion tube. Tigure
22 shows the variation of T, T3, and T along the span,
as well as the experimentally obtained bending mo-_
ments M and the bending moments M, which would
exist, without interaction.

It will be noted that for practlca.l purposes the en-
tire torque is carried by the torsion tube (skin) in the
outer two-thirds of the semispan; farther inboard, the
percentage of the total torque carried by the skin de-
creases rapidly. The curve of bending moments A
is qualitatively similar to that calculated for the At-
lantic C-2A. wing shown in figure 17. Both curves
show that, in the outhoard portion of the wing, the
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sign of the bending moment is opposite to that which
would exist if the spars carried all the torque by bend-
ing. Quantitatively, however, the experimental bend-
ing-moment curve of figure 22 shows a much faster rise
toward the root than does the calculated curve of
figure 17. Unfortunately, it was not possible to calcu-
late the relief moments because the bending properties
of the spars were not given.

CONCLUDING REMARKS

A general idea of the theoretical magnitude of the
relief action may be obtained from figure 23. This is
a plot of the relief coefficient Cr=m/M, at the root

3 TH : s » —_ _0_
against the ‘‘interaction coefficient =, for

wing frames with constant-section spars. The relief
coefficients were computed for three different types of
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F1aURE 22—Torque and bending moments (experimental) in plywood covered
wing.

loading: namely, load concentrated at tip, load uni-
formly distributed along the span, and load tapered in
the ratio of 2:1. Kach type of loading was calculated
for two types of interconnection between spars, a tip
rib only, and an infinite number of ribs. It will be
seen that the curves for the most important cases—
uniform and tapered loads on wings with many ribs—
lie very closely together, and -that the relief action
increases only very slowly for C;>30, which is the
stressed-skin range.

The calculated relief coefficients for the Driggs-
Dart and the C—2A wings are also plotted on the figure,
using the average value of B, A4, along the span for
computing the interaction coefficient. The points
fall fairly close to the corresponding curves, although
in both of these wings the bending stiffness as well as
the torsional stiffness decreases rapidly as the tip is
approached and the ratio By, 4, varies irregularly

along the span. This result suggests that for stressed-
skin wings & good estimate of the theoretical relief
action might be obtained without any caleulation
beyond that of the torsional and bending stiffnesses
for a few stations.

Wings that owe their pure torsional stiffness to
double drag-wire bracing or to the individual torsional
stiffnesses of the spars, have, as a rule, (4<20. In
this range, reliable estimates of interaction on tapered
wings cannot be obtained from figure 23, as the point
for the XHB-3 frame indicates.

When the twist or, more important, the stresses
under high loads are being calculated an extremely
important fact must be borne in mind. The ordinary
formulas for calculating bending and torsional stiff-
nesses only yield the so-called “initial stiffness”,
valid for small loads. Compact sections retain their
initial stiffness until the stresses approach the limit
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F1aurk 23.—Rellef coefficient for wings with constant-section spars,

of proportionality, but the thin-walled sections now
in common use suffer from an increasing loss of
efficiency as the load increases, owing to the fact that
parts of the structure buckle and no longer carry their
share of the load. Since the rate of loss of efficiency
with load will, in general, not be the same for the
torsional stiffness as for the bending stiffness, the ratio
B,/4, will change with increase of load and, conse-
quently, the amount of relief action will change.

In 2-spar wings covered with flat sheet the spars
will quite often be of such a shape that they lose their
bending stiffness at a slow rate, but the thin-walled
torsion tube formed by the wing covering will lose its
torsional stiffness rapidly, with & resulting decrease
of interaction effect. The test results given in figure
22 may be cited as an example. The experimental
value of the relief coefficient was somewhat less than
60 percent; it should be at least 70 percent, assuming
(=30, which is about the minimum probable value.

If the stiffness of a structural member is a function
of the load applied, the methods of analysis developed
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in this paper, are, strictly speaking, inapplicable.
However, if the load-deformation diagram of the
member is known, a substitute member of constant
stiffness may be defined by the condition that both the
original and the substitute member must store the
same amount of strain energy when a load is applied
which increases from zero to the design load. A
simple empirical method for estimating the torsional
stiffness of thin shells under large torque Joads has
been published (reference 17).

Finally, the influence of torsionally stiff ribs might
be touched upon., Throughout the present paper it
_was assumed that the ribs have no torsional stiffness.
Under this assumption, & wing frame with constant-
gection spars connected by a tip rib rigid in bending
will have & maximum relief coefficient of 0.75 when
subjected to a uniformly distributed torque; the spar
corresponds then to a cantilever beam supported at
the free end. If the tip rib is now made rigid also in
torsion, the relief coefficient increases to 0.83, the spar
acting as o beam built in on both ends. The additional

71040—30——0

relief amounts to 0.08, or 11 percent of the original
relief. Actually, only about half of this amount can
be realized because the torsional stiffness of the rib is
finite; the assumption of infinite stiffness in torsion is
not generally permissible, unlike the case of bending
stiffness.

With torstonally stiff spars, then, the additional
relief due to ribs being stiff in torsion besides being
stiff in bending is too small to justify the complication
of the analysis. With spars weak in torsion, however,
the relief due to ribs stiff in bending is small and the
relief due to ribs stiff .in torsion becomes relatively
more important. The effect of torsionally stiff ribs
on the twist of the wing frame is discussed in refer-
ence 18 for the case of spars with constant section.

LanerLey MEMORIAL AERONAUTICAL LLABORATORY,
NaTioNasL Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Fiewp, Va., April 10, 1934,



APPENDIX A

FORMULAS FOR TORSIONAL STIFFNESS

For & rod of uniform cross section, built in at one
end and: twisted by a concentrated torque at the free
end, the fundamental equation of torsion is

_TL
=77 .
Where 6, angle of twist at free end, radians.
T, torque,
L, length.

@G, modulus of shear.

J, the torsion constant, a factor corresponding
to the moment of inertia in the theory of
bending. Analogous to the bending stiff-

. ness EI, the product GJ is termed the
“torsional stiffness.” Formulas for cal-
culating the torsion constant for various
sections are given below.

(@) ()

Ja=dJ of Web=%bg(:23 (see reference 16).

D, diameter of circle inscribed at juncture.

«a, constant from reference 16. The value of
a varies between 0 and 0.3 for ususal pro-
portions. If the radius of the fillet is zero,
a varies from 0 for ¢;=0 to a=0.15 for

C3=2C;.

THIN-WALLED TUBE
(Fig. 24c)

4A4?
f ds

where A, area enclosed by median line.
ds, differential element of perimeter.
t, wall thickness of ds.

J=Tds (T-3)

(e)

FIGURE 24.

CIRCULAR TUBE
J=1I,
where 7, is the polar moment of inertia.

RECTANGLE
(Fig. 248)

1 nC e\’
J=3 68[1—0.6303—1—0.052(5) :I

I-BEAM
(Fig. 24b)

J=2J,+J,+-2aD*

(T-1)

(T-2)

where J,=¢J of ﬂa,ncre—-x bics® (1 —0. 630 +0 052 F) )
64

The integral is taken around the whole perimeter.
The shearing stress at any point is

T
=5z

The shearing force per inch of perimeter is

T
f,t=ﬂ

WOODEN BOX BEAM
(Fig. 24d)

The torsional stiffness is the sum of the torsional
stiffness of the beam considered as a thin-walled tube
(using the median line as perimeter) and of the individ-
val stiffnesses of the flanges. (See reference 15.)
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GJ=GpJo+2GrJr (T-4)

where @, shearing modulus of plywood.
@z, shearing modulus of solid wood in flange.
Jg, J of flange (by formula (T-1)).
When computing J,, the thickness ¢ must be replaced
by an effective thickness, which is expressed by

tF, = tFX ’g'f

METAL BOX BEAM

In this ease formuls (T-3) is used, but if the web has
lightening holes, a reduced effective thickness must be
used. If the holes are cut so that the remaining web
forms a truss, the calculation is similar to that given for
wire drag bracing in the main text. If the lightening
holes are of any other shape, tests must be made, since
no rules are at present available. The reduction in
thickness is not proportional to the reduction in web
area, but is much higher. Reducing the web area 50
percent by means of round lightening holes reduced the
effective thickness to 7 percent of the actual value in
one case,

WING SECTION WITH STRESSED SKIN
(Fig. 24e)

GJ=CoJo+ (@S)r+(GJ)r

where @, shearing modulus of cover material.
Jo, J of whole wing section.

(@J)p, torsional stiffness of front spar.

(@J)r, torsional stiffness of rear spar.
The two spar stiffnesses are usually very small com-
pared with GhJy. For the computation of J, it is useful
to remember that

A=kXhXe

where k usually lies between 0.65 and 0.71."

The formula given for GJ neglects the fact that the
spars act also as inner walls of the torsion tube. This
effect can be taken into account by deriving a more
accurate formula with the help of the membrane
analogy or the hydrodynamic analogy for torsion.
The result by the simple formula given above is
usually not more than 5 percent in error and is
conservative.

NUMERICAL EXAMPLES OF THREE TYPES OF BEAMS

(Fig. 25)
Material: Spruce
Webs of box beam: 2-ply, 45° spruce

E=1.3X10° 1b./sq. in.

G=284,000 Ib./sq. in. for solid spruce
G=420,000 lb./sq. in. for 45° plywood

71,000,000 | 2,878,

Typeotbeam  |A=EIb.nd B0 |4/B=ENGs
75,700,000 | 105,000 720.0
B0 | 465000 188.0

247

CALCULATION OF B

Rectangular spar (formula (T-1))

=§><1.3233><8(1—o.63 i;‘g)=5.54 in.t

B=GJ=465,000 lb.in.2

-

N\

7.

A

Routed spar (formule (T-2)) -

Lo

J—2><1><2><13<1—063><1)+1><6><(1>3
—°73 0eR3)T3 2
+2X0.035X1.06*=1.251 in *

B=@EJ=105,000 1b.in .2
Box spar (formula (T;4))

A=7X2.125=14.875 sq.in.

For calculating J,, the effective thickness of the flanges

18
. 84,000
t _IX_—QO,OOO—O'%O
therefore
_ 4X14.875%
Jo= 14 212 065

0.125 T 0.200

in.t

2J1=2><%X2><13 (1—0.63><§)=0.913 in.!
@, Jo—420,000 X 6.65=2,800,000

2G@rJ»=84,000X0.913=

76,000

QI = G,Jo+2GrJ —2,876,000 Ib.in 2



APPENDIX B

MODULI OF ELASTICITY

Young’s modulus t
Materlal Shearing modulus,  Heler-
Ec (deslgn)] Er (true)
Duralumin_...__| 10108 4108
Spruce, solid..... 1.3X10* | 1.413X10% 84108 F.P.L.
tests.
Plywood
5 Parallel-]
perpen-
dicalar
1.413X10% | 420,000 Do.
1.413X10% | 335,000 | 99,000 Do.
1.935X10% | 483,000 | 135, 000 Rg?
640,000 | 142,000 -
ence
15,

publlxh
t From values for po proportionality to 'Young’s modull I,
3 From a very veserluoftatsonsparsand at the D.V.L. (Germany).
‘The birch is evidently not quite the same as American birch.

As a general rule, the Forest Products Laboratory
Er E¢

recommends 45° plywood: =% =z Parallel-per-
pendicular plywood: G= E—T—%- Values resulting

from the application of this rule are low compared
with the values given in the table. The tabulated
values were used in the present paper as representing
the most probable values for the purpose of checking
tests by theory.

LIST OF IMPORTANT SYMBOLS

E, modulus of elasticity.

@&, modulus of shear.

I, moment of inertia.

J, torsion constant.

A=FE]I, bending stifiness of a member.

B=@J, torsional stiffness of & member.

Ag, see equation (2) of text.

By, see equation (5) of text.

b, distance between spars.

L, length of sper.

1, length of bay between ribs.

S, shear.

M,, bending moment due to external loads (equal to
the bending moment that would exist in spars if
ribs were cut).

m, relief bending moments in & spar due to ribs trans-
ferring loads from other spar.

66

M, final bending moment in spar.

T, part of total torque carried by torsional shearing
stresses in torsion tube.

T, part of total torque carried by bending of spars.
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